
1. Bahmni-Mart . 2
1.1 Overview . 2

1.1.1 Bahmni Mart Installation Setup . 6
1.1.2 Bahmni-Mart Setup with MySQLWorkbench & DBeaver . 9
1.1.3 Bahmni-Mart Json File . 13
1.1.4 Add Custom View Sql to bahmni-mart.json . 18

1.2 Modules . 20
1.2.1 Programs Module . 22
1.2.2 Patients . 25
1.2.3 Appointment Scheduling . 27
1.2.4 Bed Management . 30
1.2.5 Location . 33
1.2.6 Operation Theatre . 34
1.2.7 Person . 36
1.2.8 Provider . 39
1.2.9 Visits and Encounters . 40
1.2.10 Medication . 43
1.2.11 Orders . 45
1.2.12 Diagnosis . 46
1.2.13 Conditions . 48
1.2.14 Bacteriology Data . 49
1.2.15 Observations . 51
1.2.16 Forms 2.0 Documentation . 53
1.2.17 Registration Second Page . 54
1.2.18 Metadata . 57
1.2.19 Disposition . 58

1.3 Incremental Update . 60
1.4 Email Configuration for Notification Regarding Failed Jobs . 60
1.5 Appendix . 61
1.6 Frequently(F) Asked(A) Questions(Qs) . 62

Bahmni-Mart

Featured Pages

Content by
label
There is no content
with the specified
labels

Recently Updated

Forms 2.0 Documentation
16 minutes ago contributed by • Himabindu Thungathurty

Observations
16 minutes ago contributed by • Pritam Das

Frequently(F) Asked(A) Questions(Qs)
Sep 04, 2020 contributed by • Rakesh Kumar
(Unlicensed)

Add Custom View Sql to bahmni-mart.json
Sep 01, 2020 contributed by • Himabindu Thungathurty

Overview
Aug 19, 2020 contributed by • Himabindu Thungathurty

Overview
Addition of Custom Jobs/Views :

MSF today would like to leverage their patient data to improve efficiency, reduce unnecessary variation and waste, and identify and address gaps
in quality of care. One of the main reasons today reporting and data analysis is not as effective as it could be is not being able to extract data
from Bahmni and use it with the right tools. Most of the time today is spent managing and creating data (paper based excel reports are collected
at various project centres) and constructing data sets in custom softwares like excel rather than generating ad-hoc reports on the fly and
analysing the data.

One of the steps in the direction of easing reporting is to design how we store the input data generated from the hospitals and missions. For this
we came up with the design of an analytics database where hierarchical database is flattened and pivoted. This database is called the Mart DB or
simply the analytics DB. This piece of solution would

Make it easier for various Data Analytics tools to directly consume Bahmni Analytics database

Would make it possible for Implementers to extract data / modify existing datasets without totally understanding the openmrs data model.

Enable Developers to define new reports / extract datasets of interests faster.

In essence the pivoted and flattened structure will remove the hierarchical nature of the data.

A few views have also been created using the flattened tables of the analytical DB based on the needs of the users / statisticians which provides
data from multiple tables by running simple sql queries

Welcome to your new documentation space!

Use it to , like your organisation's travel policies, design organize any information that people need to find and reference easily
guidelines, or marketing assets.

To start, you might want to:

Customise this overview using the at the top right of this page.edit icon

Create a new page by clicking the in the space sidebar. +

Tip: Add the to any pages you want to appear in the list below.label featured Featured pages

NEED INSPIRATION?

Check out our guide on to learn best practices for creating and organizing documents in Confluence.building better documentation

null/spaces/BAH/pages/329679095/Forms+2.0+Documentation
null/display/~557058%3Ad0693809-6796-4c30-b887-eed8e802d572
null/spaces/BAH/pages/330268827/Observations
null/display/~557058%3A3e8e7719-cb9e-4745-8a81-03ddb46f33af
null/spaces/BAH/pages/552566785
null/display/~5df9bdd9b6d73c0cb5873a9e
null/display/~5df9bdd9b6d73c0cb5873a9e
null/spaces/BAH/pages/547684353/Add+Custom+View+Sql+to+bahmni-mart.json
null/display/~557058%3Ad0693809-6796-4c30-b887-eed8e802d572
null/spaces/BAH/pages/330137651/Overview
null/display/~557058%3Ad0693809-6796-4c30-b887-eed8e802d572
https://confluence.atlassian.com/confcloud/use-labels-to-organize-your-content-724764874.html
https://www.atlassian.com/software/confluence/documentation

Jobs Types & Grouped tables:-

 To simplify the amount of configuration that we are providing to the bahmni-mart application, we have packaged together similar tables
under the respective types. Now the user just need to add a single job of the packaged type and can get the all the tables under that type

Below are the packaged job types and the jobs under that type

Job Type Grouped tables

Programs Programs_default, program_outcomes_default,patient_program_data_default,program_workflow_default,
program_workflow_states_default, program_attributes

Patients

Patient_state_default, patient_allergy_status_default, patient_identifier

appointments Patient_appointment_default, appointment_service_default, service_availability_default,
appointment_speciality_default

bedManagement Bed_patient_assignment_default, bed_tags_default, current_bed_details_default

location Location_default, location_tag_map_default, location_attribute_details_default

operationTheater Surgical_block_default, surgical_appointment_default,
surgical_appointment_attribute_type_details_default, surgical_appointment_attributes

person Person_details_default, person_address_default, person_attribute_info_default,
address_hierarchy_level_default, person_attributes

provider Provider_default, provider_attribute_details_default, provider_attributes

visitsAndEncounters Patient_visit_details_default,patient_encounter_details_default,visit_attribute_details_default,
visit_attributes

medicationAndOrders Medication_data_default, [All forms under All Orderables as tables]

diagnosesAndConditions Conditions_default, [All forms under Visit Diagnoses as tables]

bacteriology [All forms under Bacteriology Concept Set as tables]

metadata All concept related information class, datatype, with respect to source.

obs [All forms under All Observation Templates as tables]

Forms 2.0 [All forms which are created with Implementer Interface]

reg reg_{table Name}

disposition [All forms under Disposition Set as tables]

Link to the example grouped job configuration

{
 "name": "Person",
 "type": "person",
 "chunkSizeToRead": "500",
 "groupedJobConfigs": [
 {
 "tableName": "person_attributes",
 "columnsToIgnore": [
 "primaryContact",
 "secondaryContact",
 "primaryRelative",
 "familyNameLocal",
 "givenNameLocal",
 "middleNameLocal"
]
 },
 {
 "tableName": "person_details_default",
 "columnsToIgnore": [
 "prefix",
 "given_name",
 "middle_name",
 "family_name_prefix",
 "family_name",
 "family_name2",
 "family_name_suffix"
]
 }
]
 }

Addition of Custom Jobs/Views :

 Bahmni-mart enables the user to add custom jobs & views in addition to the default jobs provided. Below are the respective example
configurations.

1.

2.

3.

4.

5.

6.

7.

Custom Sql Job Configuration:
{
 "name": "Patient Info",
 "type": "customSql",
 "table_name": “patient_info",
 "readerSql": "SELECT * FROM patient",
 "incrementalUpdateConfig": {
 "updateOn": "patient_id",
 "eventCategory": "Patient",
 "openmrsTableName": "patient"
 }
 }

Note : Reader sql should be executable on openmrs database. Incremental configuration is optional and can be given only when you need an
incremental update for this job.

Custom View Configuration :

{
 "name": "Person Details View",
 "sql": "SELECT * FROM person_details_default pdd JOIN
 person_address_default pad ON pad.person_id = pdd.person_id "
}

Note : sql should be executable on analytics database since we are creating view in analytics database

List of views from different jobs:

https://msfprojects.atlassian.net/wiki/spaces/BAH/pages/330268771/Programs+Module#Mart-Views

https://msfprojects.atlassian.net/wiki/spaces/BAH/pages/342392845/Patients#Mart-Views

https://msfprojects.atlassian.net/wiki/spaces/BAH/pages/329678986/Appointment+Scheduling#Mart-views

https://msfprojects.atlassian.net/wiki/spaces/BAH/pages/330268840/Bed+Management#Mart-Views

https://msfprojects.atlassian.net/wiki/spaces/BAH/pages/330268862/Operation+Theatre#Mart-Views

https://msfprojects.atlassian.net/wiki/spaces/BAH/pages/329678956/Visits+and+Encounters#Mart-Views

https://msfprojects.atlassian.net/wiki/spaces/BAH/pages/329678902/Registration+Second+Page#Mart-Views

Difference between standard Grouped Jobs, Custom Jobs and Views:

As part of we flatten the data from openmrs but we don’t get to see the readerSql for each job. The readerSql gets standard grouped jobs
generated dynamically as part of the code. So adding new columns is not straight forward and it requires change at code level.

When it comes to , we can directly see the readerSql and it redirects output to the desired table in the analytics. Adding new Custom jobs
columns to the analytics table is straightforward as its a change in the sql query.

The only configuration possible for grouped and custom jobs so far is, . This will ignore the specified columns columnsToIgnore
mentioned under json from openmrs database to analytics database.columnsToIgnore

For ignoring columns, each column in a table have to be specified. We can’t specify at job level and it has to be under that particular
table name for the job.

We can select particular job to be incremental/full load irrespective of entire bahmni-mart job type.

eg: If the bahmni-mart is running on incremental load, we can still mention few jobs to run on full load.

For , we can see the sql query but the query runs on the analytics tables but not on the openmrs tables. As part of the views query, we Views
usually combine one or more analytics tables and create a table(view) out of these tables. If there is a data change in the above analytics tables
then the view gets updated automatically

Views will not have the option to ignore columns, incremental/full load options. If we want few columns to be added/ignored that can be
directly done in the specific view query.

Setting Up CronJob for bahmni-mart:

To sync up analytics db with openmrs db, we can run bahmni-mart on regular intervals. That can be done once in a day/week based on the
requirement. For to run bahmni-mart command automatically we can configure the cron job which will trigger the bahmni-mart command at the
specified time in the day.

Sample cornjob for bahmni-mart

00 23 * * * bahmni-mart

The above cronjob runs the Bahmni-mart command daily at 11 pm in the night. The preferable time would be running the mart is after working
hours for an implementation. This will run the mart on incremental load so the entire job wouldn’t take much time.

Bahmni Mart Installation Setup

For cleaning up postgres from instance (Not required for all scenarios)

yum remove postgresql -y
yum remove postgres* -y
rm -rf /var/lib/pgsql
yum list installed | grep postgres

Remove bahmni-mart if installed before

yum remove bahmni-mart -y

Download bahmni-mart playbook

wget -O /tmp/bahmni-mart-playbook.zip https://github.com/bahmni-msf
/bahmni-mart-playbook/archive/master.zip && unzip -o /tmp/bahmni-mart-
playbook.zip -d /tmp && sudo rm -rf /etc/bahmni-mart-playbook && sudo
mv /tmp/bahmni-mart-playbook-master /etc/bahmni-mart-playbook && rm -rf
/tmp/bahmni-mart-playbook.zip

Update bahmni-mart inventory file as below

cd /etc/bahmni-mart-playbook/inventories/
mv bahmni-mart bahmni-mart_bkp

change the bahmni-mart url based on the latest artefact

wget https://s3.ap-south-1.amazonaws.com/bahmni-msf/iraq-release-
artifacts/mart_inventory
mv mart_inventory bahmni-mart

Update ip for fresh installation of mart

vi /etc/bahmni-mart-playbook/inventories/bahmni-mart
delete the line with content '<master_ip> ansible_connection=local'
add below line as first line
<master_ip> ansible_connection=ssh ansible_ssh_user=root

For standalone instance use below

localhost ansible_connection=local

[bahmni-emr-db]
localhost

[bahmni-mart]
localhost

[bahmni-mart-db]
localhost

[bahmni-mart-db-slave]

[bahmni-mart-scdf]

[metabase]
localhost

[metabase-db]
localhost

[metabase-db-slave]

[local:children]
bahmni-mart
bahmni-mart-db
bahmni-mart-db-slave
bahmni-mart-scdf
bahmni-emr-db
metabase
metabase-db
metabase-db-slave

Remove entries under , in the bahmni-mart inventory file[bahmni-mart-db-slave] [bahmni-mart-scdf], [metabase-db-slave]

vi /etc/bahmni-mart-playbook/inventories/bahmni-mart

Verify and update the below parameters in setup.yml

cd /etc/bahmni-mart-playbook

bahmni_mart_version: "2.0.3-1"
openmrs_db_password: P@ssw0rd
metabase_db_password: password
analytics_db_password: password
postgres_password: password
metabase_with_ssl: false
custom_keystore_location: "<ssl certificate in jks format>"
metabase_keystore_password: <password of jks cert>
mail_subject: "Notification regarding failed jobs"
mail_from: "no-reply@bahmni-mart.notifications"
mail_recipients: "<mail recipients separated by comma>"
analytics_db_user: analytics
metabase_db_user: metabase
analytics_db_name: analytics
metabase_db_name: metabase

Modify the file “/etc/bahmni-mart-playbook/roles/postgres/defaults/main.yml” with below entries

postgres92_repo_rpm_name: pgdg-centos92-9.2-7.noarch.rpm
postgres96_repo_rpm_name: pgdg-redhat-repo-42.0-11.noarch.rpm
postgres92_repo_download_url: http://yum.postgresql.org/9.2/redhat/rhel-
6-x86_64/{{postgres92_repo_rpm_name}}
postgres96_repo_download_url: https://yum.postgresql.org/9.6/redhat
/rhel-6-x86_64/{{postgres96_repo_rpm_name}}

Metabase without ssl

ansible-playbook -i /etc/bahmni-mart-playbook/inventories/bahmni-mart
/etc/bahmni-mart-playbook/all.yml --extra-vars '@/etc/bahmni-mart-
playbook/setup.yml' --skip-tags "custom_ssl,lets_encrypt_ssl"

1.

2.

Since the master-slave set-up is not available, remove all the lines with <slave_ip>

Update master_ip

If user wants to install mart with latest bahmni_mart_url then user need to update bahmni_mart_version to the rpm version so that it will
install the latest mart.

1.

Metabase with let's encrypt ssl(optional)

ansible-playbook -i /etc/bahmni-mart-playbook/inventories/bahmni-mart
/etc/bahmni-mart-playbook/all.yml --extra-vars '@/etc/bahmni-mart-
playbook/setup.yml' --skip-tags "without_ssl,custom_ssl"

Metabase with custom ssl(optional)

ansible-playbook -i /etc/bahmni-mart-playbook/inventories/bahmni-mart
/etc/bahmni-mart-playbook/all.yml --extra-vars '@/etc/bahmni-mart-
playbook/setup.yml' --skip-tags "without_ssl,lets_encrypt_ssl"

Add necessary jobs or Remove the extra jobs from bahmni-mart.json

vi /var/www/bahmni_config/bahmni-mart/bahmni-mart.json

Run bahmni mart

bahmni-mart
check the logs
tail -100f /var/log/bahmni-mart/bahmni-mart.log

Check if following URLs are accessible

Metabase

docker ps
docker stop <METABASE CONTAINER ID>
docker start metabase
http://<host>:9003/

Bahmni-Mart Setup with MySQLWorkbench & DBeaver

Prerequisites:

Generate public key using

ssh-keygen -t rsa

2. For latest DBeaver, Run this on your key to convert it to RSA private key.

ssh-keygen -p -m PEM -f ~/.ssh/id_rsa

MYSQL:

Tools:

1.MySQLWorkbench
2.DBeaver

Connecting using MySQLWorkbench:

Change the connection method to Standard TCP/IP over SSH, by default,
connection method will be set to Standard (TCP/IP)
Hostname: “qa-reporting.ehealthunit.org”
Username: “centos”
SSH key file path: “provide the path to id_rsa file”
MySQL Hostname: “localhost”
MySQL Server Port: “3306”
Username: “root”

Once all the details are added, Test Connection and ideally you see the “Connection Successful” popup.

POSTGRESS:

Tools:

DBeaver

Connecting to POSTGRESS using DBeaver:

Select postgress DB while creating a new connection
Select SSH tab and check “Use SSH Tunnel” option
Host/IP: “qa-reporting.ehealthunit.org”
Port: 22
User Name: “centos”
Authentication Method: “Public Key”
Private Key: “provide the path to id_rsa file”

https://dbeaver.io/

Once all the details are added, Test Connection and ideally you see the “Connection Successful” popup.

Bahmni-Mart Json File

This is the default bahmni_mart json file, where we could find reference for all the jobs mentioned below

programs
patients
Appointments
Bed Management
Location
Operation Theater
Person
Provider
Visits And Encounters
Medication And Orders
Diagnoses And Conditions
Bacteriology Data
MetaData Dictionary
Obs Data
Form2 Obs Data
Registration Second Page
Disposition Data

{
 "jobs": [
 {
 "name": "Programs",
 "type": "programs",
 "chunkSizeToRead": "500"

 },
 {
 "name": "Patients",
 "type": "patients",
 "chunkSizeToRead": "500"
 },
 {
 "name": "Appointments",
 "type": "appointments",
 "chunkSizeToRead": "500",
 "groupedJobConfigs": [
 {
 "tableName": "appointment_service_default",
 "columnsToIgnore": [
]
 }
]
 },
 {
 "name": "Bed Management",
 "type": "bedManagement",
 "chunkSizeToRead": "500"
 },
 {
 "name": "Location",
 "type": "location",
 "chunkSizeToRead": "500"
 },
 {
 "name": "Operation Theater",
 "type": "operationTheater",
 "chunkSizeToRead": "500"
 },
 {
 "name": "Person",
 "type": "person",
 "chunkSizeToRead": "500",
 "groupedJobConfigs": [
 {
 "tableName": "person_attributes",
 "columnsToIgnore": [
 "primaryContact",
 "secondaryContact",
 "primaryRelative",
 "familyNameLocal",
 "givenNameLocal",
 "middleNameLocal"
]
 },
 {

 "tableName": "person_details_default",
 "columnsToIgnore": [
 "prefix",
 "given_name",
 "middle_name",
 "family_name_prefix",
 "family_name",
 "family_name2",
 "family_name_suffix"
]
 }
]
 },
 {
 "name": "Provider",
 "type": "provider",
 "chunkSizeToRead": "500"
 },
 {
 "name": "Visits And Encounters",
 "type": "visitsAndEncounters",
 "chunkSizeToRead": "500"
 },
 {
 "name": "Medication And Orders",
 "type": "medicationAndOrders",
 "chunkSizeToRead": "500",
 "groupedJobConfigs": [
 {
 "tableName": "medication_data_default",
 "columnsToIgnore": [
 "instructions",
 "stop_notes"
]
 }
]
 },
 {
 "name": "Diagnoses And Conditions",
 "type": "diagnosesAndConditions",
 "chunkSizeToRead": "500"
 },
 {
 "name": "Bacteriology Data",
 "conceptReferenceSource": "",
 "type": "bacteriology"
 },
 {
 "name": "MetaData Dictionary",
 "type": "metadata",

 "conceptReferenceSource": ""
 },
 {
 "name": "Obs Data",
 "type": "obs",
 "incrementalUpdateConfig": {
 "updateOn": "encounter_id",
 "eventCategory": "Encounter",
 "openmrsTableName": "encounter"
 },
 "separateTableConfig": {
 "enableForAddMoreAndMultiSelect": true,
 "separateTables": [
]
 },
 "conceptReferenceSource": "",
 "ignoreAllFreeTextConcepts": true,
 "columnsToIgnore": [
 "Image",
 "Video"
]
 },
 {
 "name": "Form2 Obs Data",
 "type": "form2obs",
 "incrementalUpdateConfig": {
 "updateOn": "encounter_id",
 "eventCategory": "Encounter",
 "openmrsTableName": "encounter"
 },
 "separateTableConfig": {
 "enableForAddMoreAndMultiSelect": true,
 "separateTables": [
]
 },
 "conceptReferenceSource": "",
 "ignoreAllFreeTextConcepts": true,
 "columnsToIgnore": [
 "Image"
]
 },
 {
 "name": "Registration Second Page",
 "type": "reg",
 "columnsToIgnore": [],
 "separateTableConfig": {
 "enableForAddMoreAndMultiSelect": true,
 "separateTables": []
 },
 "incrementalUpdateConfig": {

 "updateOn": "encounter_id",
 "eventCategory": "Encounter",
 "openmrsTableName": "encounter"
 }
 },
 {
 "name": "Disposition Data",
 "type": "disposition",
 "columnsToIgnore": [],
 "incrementalUpdateConfig": {
 "updateOn": "encounter_id",
 "eventCategory": "Encounter",
 "openmrsTableName": "encounter"
 }
 }
],
 "procedures": [
 {
 "name": "Discharge Date Procedure",
 "sourceFilePath": "classpath:procedureSql/dischargeDateProc.sql"
 },
 {
 "name": "Age Group Procedure",
 "sourceFilePath": "classpath:procedureSql/ageGroupProc.sql"
 }
],
 "views": [
 {
 "name": "patient_program_view",
 "sourceFilePath": "classpath:viewSql/patientProgramView.sql"
 },
 {
 "name": "patient_program_state_view",
 "sourceFilePath": "classpath:viewSql/patientProgramStateView.sql"
 },
 {
 "name": "patient_visits_encounters_view",
 "sourceFilePath": "classpath:viewSql/patientVisitsEncountersView.
sql"
 },
 {
 "name": "appointment_admin_panel_view",
 "sql": "SELECT * FROM appointment_service_default LEFT OUTER JOIN
service_availability_default USING (appointment_service_id,
service_name)"
 },
 {
 "name": "patient_details_view",
 "sourceFilePath": "classpath:viewSql/patientDetailsView.sql"
 },

1.

2.

 {
 "name": "patient_information_view",
 "sourceFilePath": "classpath:viewSql/patientInformationView.sql"
 },
 {
 "name": "bed_management_view",
 "sourceFilePath": "classpath:viewSql/bedManagementView.sql"
 },
 {
 "name": "bed_management_locations_view",
 "sourceFilePath": "classpath:viewSql/locationWiseDischarge.sql"
 },
 {
 "name": "patient_bed_view",
 "sourceFilePath": "classpath:viewSql/patientBedView.sql"
 },
 {
 "name": "patient_operation_theater_view",
 "sourceFilePath": "classpath:viewSql/patientOperationTheaterView.
sql"
 },
 {
 "name": "patient_appointment_view",
 "sourceFilePath": "classpath:viewSql/patientAppointmentView.sql"
 },
 {
 "name": "patient_program_medication_view",
 "sourceFilePath": "classpath:viewSql/patientProgramMedicationView.
sql"
 },
 {
 "name": "patient_diagnosis_condition_view",
 "sourceFilePath": "classpath:viewSql
/patientDiagnosisConditionView.sql"
 },
 {
 "name": "patient_bed_tags_history_view",
 "sourceFilePath": "classpath:viewSql/patientBedTagView.sql"
 }
]
}

Add Custom View Sql to bahmni-mart.json

As we know view is a virtual table based on the result-set of an SQL statement. All the existing views
that we have in bahmni-mart.json are bundled with bahmni-mart.rpm file. But if we want to add a new
view query to the bahmni-mart.json file, we have 2 ways to implement.

Add direct query

Give path of the query

1. Add Direct Query:

1. Add Direct Query:

2. Give Path of the Query

Points to note:

If we have simple view query to get executed on analytics database then we can directly add it in the
bahmni-mart.json with the table name as show below

{
 "name":
"patient_program_medication_view_test",
 "sql": "SELECT pd.person_id AS patient_id,
ppd.program_id, md.patient_program_name AS
program_name, ppd.date_enrolled, ppd.
date_completed, ppd.program_outcome, pd.
gender, pd.birthyear AS birth_year,
EXTRACT(YEAR FROM (SELECT age(md.start_date,
TO_DATE(CONCAT('01-01-', pd.birthyear), 'dd-MM-
yyyy')))) AS age_at_medication, age_group(md.
start_date, TO_DATE(CONCAT('01-01-', pd.
birthyear), 'dd-MM-yyyy')) AS
age_group_at_medication, pd.dead, pa.*, md.
patient_program_id, md.encounter_id, md.
encounter_type_name, md.order_id, md.
orderer_name, md.coded_drug_name, md.
non_coded_drug_name, md.dose, md.dose_units,
md.frequency, md.route, md.
start_date AS medication_start_date,
md.calculated_end_date AS
medication_calculated_end_date, md.
date_stopped AS
medication_stopped_date, md.stop_reason, md.
duration, md.duration_units, md.quantity, md.
quantity_units, md.dispense AS
is_dispensed, md.visit_id, md.visit_type FROM
person_details_default pd LEFT JOIN
person_attributes pa ON pa.person_id = pd.
person_id LEFT JOIN medication_data_default md
ON md.patient_id = pd.person_id LEFT OUTER
JOIN patient_program_data_default ppd ON ppd.
patient_id = md.patient_id and ppd.
patient_program_id = md.patient_program_id"
}

Once we add the above configuration in the mart file and run the bahmni-mart command, we will be
able to see the corresponding table in the analytics database.

2. Give Path of the Query

If we have sql queries which is very big and can’t be included in the bahmni-mart.json file then it
requires creating new sql file for it. Once we create/add sql file to bahmni instance in a specific path,
we have to update the absolute path of sql query in the bahmni-mart.json. After that running the
bahmni-mart will create the corresponding table in the analytics database.

{
 "name":
"patient_program_medication_view_test",
 "sourceFilePath":"file:/home/bahmni/viewSql
/patientProgramMedicationViewTest.sql"
}

In the above sample comfiguration, we have the sql file added in /home/bahmni/viewSql
directory.

Points to note:

This query must be a view query which will run on analytics tables.

We can’t use these sql queries to run on openmrs tables to create the table in analytics
database. For that we must add sql query to bahmni-mart and it will be bundled with the
mart rpm.

Modules

Module Name Description

Programs

Configuration
Existing OpenMRS tables
Flattened Mart Tables
Mart Views

Patients

Configuration
Existing OpenMRS table
Mart Tables
Mart Views

Appointment Scheduling

Configuration
Existing OpenMRS tables
Flattened Mart Tables
Mart Views

Bed Management

Configuration
Existing OpenMRS tables
Flattened Mart Tables
Mart Views

Location

Configuration
Existing OpenMRS tables
Flattened Mart Tables

Operation Theatre

Configuration
Existing OpenMRS tables
Flattened Mart Tables

Person

Configuration
Existing OpenMRS tables
Flattened Mart Tables

Provider

Configuration
Existing OpenMRS tables
Flattened Mart Tables

Visits and Encounters

Configuration
Existing OpenMRS tables
Flattened Mart Tables
Mart Views

Medication and orders

Configuration
Existing OpenMRS tables
Flattened Mart Tables

Diagnosis and condition

Configuration
Existing OpenMRS tables
Flattened Mart Tables
Mart Views

Existing OpenMRS tables:
Flattened Mart Tables:
Usable Configurations:

Programs Module

This module is similar to the Clinical module present in the product.
Configuration

incrementalUpdateConfig is applicable (Refer Incremental Update)

ColumnsToIgnore apply for this module (Refer Appendix)

Existing OpenMRS tables

Flattened Mart Tables

Mart Views

Configuration

incrementalUpdateConfig is applicable (Refer)Incremental Update

ColumnsToIgnore apply for this module (Refer Appendix)

"jobs": [
{
 "name": "Programs",
 "type": "programs",
 "chunkSizeToRead": "500"
 "groupedJobConfigs": [
 {
 "tableName": "program_outcomes_default",
 "columnsToIgnore": [
]
 }
]
}

Existing OpenMRS tables

Program
Concept
Concept_set
Concept_name
Concept_view
Patient_program
Episode_patient_program
Location

Patient
Patient_state
Program_workflow_state
Program_workflow

Flattened Mart Tables

programs_default
program_outcomes_default
patient_program_data_default
program_workflow_default
program_workflow_states_default
program_attributes

a) This table gives all the programs in an implementationprograms_default -

Openmrs tables used: program

Column Name Description

program_id Program id as in Openmrs

program_name Name of the Program

program_description Description of the Program

creator_id Creator ID of the Program

creator_name Name of the Creator

date_created Date on which the Program was created

date_changed If any modifications to the Program is done, the date the changes were done is captured here

changed_by_id ID by whom the change was done

changed_by_name Name by whom the change was done

b) program_outcomes_default - This table lists all the outcomes for a program. Each outcome of a program will be a separate row
Openmrs tables used: program, concept, concept_set, concept_name

Column Name Description

program_id Program id as in Openmrs

program_name Name of the Program

program_outcome Outcome of the program

c) patient_program_data_default - This table gives the data about when the patient is enrolled into a program, completion date of the program
and other information like location at which the patient enrolled into a program etc.
Openmrs tables used: patient_program, episode_patient_program, concept_name, location

Column Name Description

patient_id Database id of patient

program_id Program id as in Openmrs

patient_program_id Unique id generated when a patient is enrolled in to a program from Openmrs table patient_program

date_enrolled Date enrolled in to the program

age_during_enrollment Age of the patient during program enrollment

(Date difference of birth date and program enrollment date)

date_completed Date when the patient completed the program

age_during_completion Age of the patient during program completion
(Date difference of birth date and program completion date)

location_id Id of the location where the patient is enrolled to a program

location_name Name of the location where the patient is enrolled to a program

program_outcome Outcome of the program for patient

creator_id Id of the user who enrolled the patient in to program

creator _name Name of the user who enrolled the patient in to program

date_created Date on which the entry was made

date_changed If any modifications to the patient program enrolment is done, the date the changes were done

changed_by_id ID by whom the change was done

changed_by_name Name by whom the change was done

voided If patient information is deleted, voided shows true. (From Openmrs table patient_program)

d) program_workflow_default - This table lists all the workflows in a program. This is a metadata table that does not capture any user entered
information. Every program can have a workflow that determines all the states a patient can transition to in that program.

Openmrs tables used: program_workflow, concept_view

Column Name Description

program_id Program id as in Openmrs

program_workflow_id Id of the workflow

program_workflow_name Name of the workflow

f) program_workfow_states_default This table lists all the states in workflows in a program. This is a metadata table that does not capture -
any user entered information. Every program can have a workflow that determines all the states a patient can transition to in that program.

Openmrs tables used: program_workflow_state, program_workflow, users, concept_view

Column Name Description

program_workflow_state_id Unique id generated for a program workflow state

program_workflow_id Unique id generated for program workflow

state_name Name of the state

program_workflow_name Name of the program workflow

initial True if the state is initial state else False

terminal True if the state is terminal state else False

creator_id Id of the creator of the state

creator_name Name of the creator of the state

date_created Date on which the state was created

date_changed Date on which if any changes are made

changed_by_id Id of the user who made changes

changed_by_name Name of the user who made changes

g) This table gives all the program attributes enrolled for a particular patient.program_attributes -

Openmrs tables used: program_attribute_type, patient_program_attribute

Mart Table:- program_attributes

Column Name Description

patient_program_id Unique id generated in DB when a patient is enrolled to a program

program_attribute 1

program_attribute 2

Mart Views

a) patient_program_view

This view gives all the person details along with the program details that patient has been enrolled to. If a patient is enrolled into 2 programs (or
twice in to the same program), there will be 2 rows corresponding to that patient id. The data related to programs will be different in two rows
where as the person details data will be duplicated. This gives person details like gender, birthdate, person address, person attributes captured in
registration page and program data like date enrolled in to the program, date of completion and program outcome. Patient details also
includes (Patient’s age during program enrollment) and age_group_at_progage_at_programram (Patient’s age group during program enrollment).

Mart tables used: person_details, person_address, person_attributes, patient_program_data

b) patient_program_state_view

This view gives all the person details along with the program details that patient has been enrolled to. If a patient is enrolled into 2 programs (or
twice in to the same program), there be 2 rows with different patient_program_id corresponding to that patient id. The data related to will
programs will be different in two rows where as the person details data will be duplicated. This gives person details like gender, birthdate, person
address, person attributes captured in registration page and program data like date enrolled in to the program, date of completion and program
outcome. Patient details also includes (Patient’s age during program enrollment) and age_group_at_progage_at_programram (Patient’s age
group during program enrollment).

Mart tables used: person_details, person_address, person_attributes, patient_program_data

Note: doesn’t have state transition rows where as have it.patient_program_view patient_program_state_view

c) patient_program_info_view

This view gives all the programs a patient is enrolled in to and all the state transitions that a patient has undergone as part of the program. Every
patient state that details state name, start date of the state and end date of the state will be a different row and all the program related information
like program name, date enrolled in to program will be duplicated.

Mart tables used: programs, patient_program_data, patient_state

Patients

Configuration
incrementalUpdateConfig is applicable (Refer Incremental Update)

ColumnsToIgnore apply for this module (Refer Appendix)

Existing OpenMRS tables

Flattened Mart Tables

Mart Views

Configuration

incrementalUpdateConfig is applicable (Refer)Incremental Update

ColumnsToIgnore apply for this module (Refer Appendix)

{
 "name": "Patients",
 "type": "patients",
 "chunkSizeToRead": "500"

}

Existing OpenMRS tables

patient
patient_program
patient_state
person
person_name
patient_identifier
users
program
program_workflow_state
concept_view

Flattened Mart Tables

patient_state_default
patient_allergy_status_default
patient_identifier

a) patient_state_default - This table gives details about patient state transitions in a program.

Openmrs tables used: patient, patient_program, program, patient_state, program_workflow_state, concept_view

Column Name Description

patient_state_id Unique column id from patient_state table from openmrs

patient_program_id Unique id generated in DB when a patient is enrolled to a program

patient_id Patient id from openmrs DB

program_id Program ID from the program table

program_name Name of the program to which the patient is enrolled

state Program state id

state_name Name of the program state

start_date Start date of the patient state

end_date End date of the patient state

creator_id Id of the creator who started the patient sate

creator_name Name of the creator who started the patient state

date_created Date on the which the patient moved to this state

date_changed Date on which any changes to the state was made

changed_by_id Id of the user who made changes

changed_by_name Name of the user who made changes

b) This table displays allergy status information of each patient, present in the person tablepatient_allergy_status_default -

Openmrs tables used: patient

Mart Table :- patient_allergy_status

Column Name Description

patient_id Patient id from openmrs DB

allergy_status Allergy status of the patient, if the value is not provided the “Unknown” will be displayed by default.

c) This is an EAV table. Columns are the pivoted values in identifier_type_table.patient_identifier -

Openmrs tables used: patient, person, patient_identifier

Mart Table :- patient_identifier

Column Name Description

person_attribute_type_id Id of person attribute type

name Name of the person attribute

description Description of the person attribute

Mart Views

a) :patient_details_view

This view provides those patient details which help in identifying a patient in terms of Nationality, camp, and special needs like caretaker
requirements, legal guardian, etc and attributes pertaining to those needs

Mart tables used: person_details, person_attributes

b) Patient_information_view:

This view provides all the patient attributes, barring the PII, as captured in the Registration module.

Mart tables used : patient_identifier, person_details, person_attributes, person_address

Appointment Scheduling

Configuration
ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

Flattened Mart Tables
Note : The below Mart tables are created by customSql job type.

Mart views

Configuration

ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Appointments",
 "type": "appointments",
 "chunkSizeToRead": "500",
 "groupedJobConfigs": [
 {
 "tableName": "appointment_service_default",
 "columnsToIgnore": [
]
 }
]
}

Existing OpenMRS tables

Patient_appontment
Appointment_service
appointment_speciality

Flattened Mart Tables

Note : The below Mart tables are created by customSql job type.

patient_appointment_default
appointment_service_default
appointment_speciality_default
service_availability_default

a) patient_appointment_default

Column Name Description

patient_id Patient identification number.

appointment_id Id reference for an appointment

appointment_location Location where the appointment is created

appointment_provider Creator of the appointment

appointment_service Service of the appointment

appointment_service_duration Service duration of the appointment

appointment_service_type Service type of the appointment

appointment_service_type_duration Service type duration of the appointment

appointment_speciality Speciality of the appointment

appointment_start_time Start_time of the appointment

appointment_status Status of the appointment

appointment_end_time End time of the appointment

appointment_kind Refers whether it is WalkIn or Scheduled appt.

comments Comments given during appointment creation

b) appointment_service_default

Column Name Description

appointment_service_id Id of appointment service

location_name Location of the appointment

service_description Description of the service

service_duration Duration of the service

service_starttime Start time of the service

service_endtime End time of the service

service_max_load Max load of the service

service_name Name of the service

service_type Type of the service

service_type_duration Duration of service type

speciality Speciality of the service

c) appointment_speciality_default

Column Name Description

speciality_id Id of speciality

speciality Appointment speciality

d) service_availability_default

Column Name Description

appointment_service_id Id of appointment_service

availability_start_time Start time of the availability

availability_end_time End time of the availability

availability_day_of_week Day on which service is available

availability_max_load Max load of the availability

service_location Location of the service

service_name Name of the service

Mart views

a) patient_appointment_view

This view combines person_details_default, person_attributes and patient_appointment_default tables. Additionally, age_during_appointment
(Date difference between patient_appointment_startdate and birthdate) and the corresponding age group.

b) appointment_admin_panel_view

This view combines appointment_service_default and service_availability_default

Bed Management

Configuration
ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

Flattened Mart Tables

Mart Views

Configuration

ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Bed Management",
 "type": "bedManagement",
 "chunkSizeToRead": "500"
}

Existing OpenMRS tables

Bed
Bed_tag_map
Bed_tag
Bed_patient_assignment_map
Bed_type
Bed_location_map
Location
Encounter
Visit
Visit_type

Flattened Mart Tables

Note : The below Mart tables are created by customSql job type.

bed_patient_assignment_default
bed_tags_default
current_bed_details_default

a) bed_patient_assignment_default

Column Name Description

patient_id Patient identification number.

bed_id Id reference for a bed

bed_number Number assigned by hospital for a bed for their identification.

date_started Date time column that gives occupancy duration of patient on different encounters

date_stopped Date time column that gives occupancy duration of patient on different encounters

location location of the patient in bed management module

encounter_id Encounter on which the bed was occupied by the patient

encounter_datetime Time of encounter

visit_id Id of the visit

visit_type Type of visit of the patient

b) bed_tags_default

Column Name Description

bed_tag_map_id Id reference for bed tag map

bed_id Id reference for a bed

bed_location Location of bed in the hospital

bed_number Number assigned by hospital for a bed for their identification

bed_status Status of the bed (eg :Available, Occupied)

bed_tag_name Tag for bed (eg : Lost, Isolation, Strict Isolation, Reserved for CT)

date_created tag start date

date_changed tag changed date

date_stopped Date stopped is date voided

c) current_bed_details

Column Name Description

bed_id Id reference for a bed

bed_location Location of bed in the hospital

bed_number Number assigned by hospital for a bed for their identification.

bed_type Type of bed

Mart Views

a) bed_management_view

This view provides the details of all the beds that a patient had been assigned to along with details like start and end date & time. It also provides
information about the status of each bed when assigned to the patient and its location in the hospital. Since a patient may be assigned to different
beds at different times there will be multiple rows for same patient.

Column Name Description

patient_id Patient identification number.

visit_id Id reference for visit

bed_number Number assigned by hospital for a bed for their identification.

date_started Date time column that gives occupancy duration of patient on different encounters

date_stopped Date time column that gives occupancy duration of patient on different encounters

location location of the patient in bed management module

encounter_type_name Encounter on which the bed was occupied by the patient

bed_tag_name tag name assigned to the bed

tag_start_date tag start date

tag_end_date tag end date

b) patient_bed_tags_history_view

Column Name Description

patient_id Id reference for a patient

visit_id Patient visit id

encounter_id Id reference for an encounter

bed_number Bed number

location Location in hospital

age_at_bed_assignment Age of patient

age_group_at_bed_assignment Under which age range the patient belongs

action action performed (Movement/Discharge etc..)

assigned_on Assigned date

discharged_on Patient discharge date

bed_tags Bed tag, if tagged

bed_tag_created Date bed was tagged

bed_tag_removed Date bed tag was removed

 c) patient_bed_view

Column Name Description

age_at_bed_assignment Age of the patient during bed assignment

bed_assigned_date Date of bed assignment

bed_discharged_date Date of discharge from bed

birth_year Year of birth of the patient

dead True (Patient is Dead)

False(Patient is not Dead)

gender Gender of the patient

location Location of the bed

nationalIdentificationNumber Patient attribute

patient_id Id of the Patient

patientAddress Patient attribute

patientAddressLine2 Patient attribute

patientCountry Patient attribute

patientDistrict Patient attribute

person_id Person id of the patient

telephoneNumber Patient Attribute

visit_id Visit id of the patient

Location

configuration

configuration
incrementalUpdateConfig is applicable (Refer Incremental Update)

Flattened Mart Tables

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Location",
 "type": "location",
 "chunkSizeToRead": "500"
}

Existing OpenMRS tables

location
location_tag_name
location_tag_map
location_attribute
location_attribute_type

Flattened Mart Tables

location_default
location_tag_map_default
location_attribute_details_default

a) - This table provides the location and all the details of locations.location_default

Openmrs tables used: location

Column Name Description

location_id Unique column id from location table from openmrs

name Name of the location

description Description for that particular location

address1 - address15 Represents different fields in address (Configurable)

city_village City/Village of the patient

state_province State/Province of the patient

postal_code Postal code of the patient’s residential area

country Country of patient’s residence

county_district District of the patient’s residence

latitude Latitude of the area of residence

longitude Longitude of the area of residence

start_date Date when the patient started living in that area

end_date Date when the patient stopped being in that area

parent_location parent locations id

b) - This table provides the location tag map detailslocation_tag_map_default

Openmrs Tables used :- location, location_tag_name, location_tag_map

Column Name Description

location_id Unique column id from location table in openmrs

location_tag_id Unique column id from location_tag table in openmrs

location_tag_name Name of location from location_tag table in openmrs

location_tag_description Location Tag description from location_tag table in openmrs

c) location_attribute_details_default -

Openmrs Tables used :- location, location_attribute , location_attribute_type

Column Name Description

location_attribute_id Unique column id from location_attribute table in openmrs

attribute_type_id location attribute type id from location_attribute table in openmrs

value_reference value_reference from location_attribute table in openmrs

location_attribute_type_name value_reference from location_attribute table in openmrs

location_attribute_type_description location_attribute_type description from location_attribute table in openmrs

location_attribute_type_datatype location_attribute_type_datatype from location_attribute table in openmrs

location_attribute_type_datatype_config location_attribute_type_datatype_config from location_attribute table in openmrs

location_attribute_type_preferred_handler location_attribute_type_preferred_handler from location_attribute table in openmrs

location_attribute_type_handler_config location_attribute_type_handler_config from location_attribute table in openmrs

location_attribute_type_min_occurs location_attribute_type_min_occurs from location_attribute table in openmrs

location_attribute_type_min_occurs location_attribute_type_min_occurs from location_attribute table in openmrs

Operation Theatre

Configuration
incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

Flattened Mart Tables

Mart Views

Configuration

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Operation Theater",
 "type": "operationTheater",
 "chunkSizeToRead": "500"
}

Existing OpenMRS tables

Surgical_block
Surgical_appointment
Surgical_appointment_attribute
Surgical_appointment_attribute_type
Provider
Person_name
Location

Flattened Mart Tables

surgical_block_default
surgical_appointment_default
surgical_appointment_attributes
surgical_appointment_attribute_type_details_default

a) surgical_block_default

Column Name Description

surgical_block_id Identifier for the table

primary_provider_name Name of the Surgeon performing the surgery

creator_name Name of creator for surgical block

location_name Location of the operation theatre

block_starttime Start time for surgery block

block_endtime End time for surgery block

date_created Date of creation for surgical block

date_changed Changed date if modified

changed_by Name of person who changed the surgical block

b) surgical_appointment_default

Column Name Description

surgical_appointment_id Table Identifier

surgical_block_id Identifier for surgical block related to this surgery

patient_id Identifier for the patient undergoing surgery

sort_weight Weight will be used to order the appointment

status Status of the surgery

actual_start_datetime Actual Surgery start time

actual_end_datetime Actual time at which surgery ended

notes Notes added after surgery

date_created Date when the surgery appointment was created

date_changed If modified the date of modification of the surgery appointment

creator_name Name of the person who created the surgery appointment

changed_by Name of the person who modified the surgery appointment

c) surgical_appointment_attributes

Column Name Description

surgical_appointment_id Identifier for the surgical appointment

procedure Name of the surgical procedure

estTimeHours Estimated time for surgery in hours

estTimeMinutes Estimated time for surgery in minutes extra to the above hours

cleaningTime Time for cleaning after the surgery

otherSurgeon Name of additional surgeon

surgicalAssistant Name of assistant

anaesthetist Name of the doctor who performs anesthesia

scrubNurse Name of scrub nurse for the surgery

circulatingNurse Name of circulating nurse (nurse from other location)

notes Notes added after surgery is done

d) surgical_appointment_attribute_type_details_default

Column Name Description

name Name of the attributes used in the surgical appointment table

description Description of the attributes used

Mart Views

a) patient_operation_theater_view

This provides a comprehensive view of operation theatre block details such as creation date, surgeries scheduled, location of the block, surgeon
assigned, procedure to be carried out, etc. Since a patient can have multiple surgeries scheduled at different times there can be multiple rows ,
but of different data for the same patient. Patient details includes age_at_surgery (Age of the patient during surgery) and age_group_at_surgery
(Age group of the patient during surgery). The surgical block date corresponds to all the surgeries planned in that block for that day. Whenever a
surgery is postponed the block date will give the actual scheduled time of the surgery.

Person

configuration
ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

Flattened Mart Tables

configuration

ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Person",
 "type": "person",
 "chunkSizeToRead": "500",
 "groupedJobConfigs": [
 {
 "tableName": "person_details_default",
 "columnsToIgnore": []
 }
]
}

Existing OpenMRS tables

person
person_name
Patient_identifier
person_address
person_attribute_type
address_hierarchy_level

Flattened Mart Tables

person_details_default
person_address_default
person_attribute_info_default
address_hierarchy_level_default

a) person_details_default - This table provides all the person related information.

openmrs tables used:- person, person_name

Column Name Description

person_id Id reference to the person, from person table in openmrs

person_name_id Name of person from person_name table in openmrs

preferred Preferred from person_name table in openmrs

gender gender of person from person table in openmrs

birthyear year of person birth

birthtime Time of person birth

birthdate_estimated provided date of birth is estimated or accurate, is indicated with birth_estimated (true/false
)

age age of person from person table

age_group Under which age range the patient belongs

dead death status from person table (true of false)

death_date death date in case

deathdate_estimated if death date is not accurate then this field indicates the same (boolean value true/false)

cause_of_death cause of death from person table

b) person_address_default - This table provides all the address information of persons.

openmrs tables used:- person_address

Column Name Description

person_id Patient identifier

preferred Preferred address of the patients if they have multiple addresses

address1 - address15 Represents different fields in address (Configurable)

city_village City/Village of the patient

state_province State/Province of the patient

postal_code Postal code of the patient’s residential area

country Country of patient’s residence

county_district District of the patient’s residence

latitude Latitude of the area of residence

longitude Longitude of the area of residence

start_date Date when the patient started living in that area

end_date Date when the patient stopped being in that area

c) person_attribute_info_default - This table provides all the information related person attributes

openmrs table used:- person_attribute_type

Column Name Description

person_attribute_type_id Id reference to the person attribute, from person_attribute_type table in openmrs

name name of the person attribute type

description description of the person attribute type

d) address_hierarchy_level_default- This table provides us the address hierarchy level information.

openmrs table used:- address_hierarchy_level

Column Name Description

address_hierarchy_level_id Id reference to the address, from address_hierarchy_level table in openmrs

name name of the address field

parent_level_id parent_level_id of address field

address_filed To which address filed the data is filled in.

e) person_attributes : This table contains all the patient attributes that where used in the registration page. Columns will be generated
dynamically based on the attributes that were used as a part of that specific implementation.

Eg : givenName, familyName, isCaretakerRequired, caretakerGender

Provider

 Configuration
ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

 Configuration

ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer)Incremental Update

 {
 "name": "Provider",
 "type": "provider",
 "chunkSizeToRead": "500"
}

Existing OpenMRS tables

provider
provider_attribute
provider_attribute_type

Flattened Mart Tables

provider_default
provdier_attributes
provider_attribute_details_default

a) This table gives all the provider information in an implementationprovider_default:-

Openmrs tables used: provider

Column Name Description

provider_id provider id as in Openmrs

person_id person id as in Openmrs

name name of the provider

identifier provider identifier for that provider (Not patient identifier)

provider_role_id role_id for that provider

b) This table gives all the provider attribute information in an implementationprovider_attribute:-

Openmrs tables used: provider:- provider, provider_attribute, provider_attribute_type

Column Name Description

provider_id provider id as in Openmrs

All other provider attributes as separate columns.

c) provider_attribute_details_default - This table displays all the provider attribute details

openmrs tables used:- provider, provider_attribute, provider_attribute_type.

Column Name Description

provider_attribute_id Id reference for provider attribute (provider_attribute table in openmrs)

attribute_type_id Id reference for attribute type (provider_attribute table in openmrs)

provider_id Id reference for provider (provider table in openmrs)

value_reference value reference is from provider_attribute table in openmrs

provider_attribute_type_name attribute type name from provider_attribute_type table in openmrs

provider_attribute_type_description Description of attribute type from provider_attribute_type table in openmrs

provider_attribute_datatype Date type of attribute type from provider_attribute_type table in openmrs

provider_attribute_datatype_config Date type config of attribute type from provider_attribute_type table in openmrs

provider_attribute_type_preferred_handler preferred_handler of attribute type from provider_attribute_type table in openmrs

provider_attribute_type_handler_config handler_type of attribute type from provider_attribute_type table in openmrs

provider_attribute_type_min_occurs min_occurs of attribute type from provider_attribute_type table in openmrs

provider_attribute_type_max_occurs max_occurs of attribute type from provider_attribute_type table in openmrs

Visits and Encounters

Configuration
ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

Flattened Mart Tables

Mart Views

Configuration

ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Visits And Encounters",

 "type": "visitsAndEncounters",
 "chunkSizeToRead": "500"
}

Existing OpenMRS tables

visit_type
visit
visit_attribute
visit_attribute_type
encounter
encounter_type
encounter_provider
encounter_role
episode_encounter
provider
person_name
patient
location

Flattened Mart Tables

patient_visit_details_default
visit_attribute_details_default
visit_attributes
patient_encounter_details_default

a) Visits

 i) patient_visit_details_default

Column Name Description

visit_id Id reference for a visit

patient_id Id reference for a patient

visit_type_id Id reference for visit type

visit_type_name Name of visit [IPD/ OPD/ Special OPD / Emergency etc]

visit_type_description Description of visit type

visit_start_date Start date of visit

visit_end_date End date of visit

indication_concept_id indication_concept_id from visit table in openmrs

location_id Id reference for location

location_name Name of location [general ward / Registration Desk, Labor ward etc]

 ii) visit_attribute_details_default

Column Name Description

visit_id Id reference for a visit

visit_attribute_id Id reference for a visit attribute

value_reference Value for the attribute [OPD / IPD]

visit_attribute_type_id Id reference for a visit attribute type

visit_attribute_type_name Visit type [Visit status / Admission status]

visit_attribute_type_description visit attribute type description from visit_attribute_type openmrs table

visit_attribute_type_datatype visit_attribute_type_datatype from visit_attribute_type openmrs table

visit_attribute_type_datatype_config visit_attribute_type_datatype_config from visit_attribute_type openmrs table

visit_attribute_type_preferred_handler visit_attribute_type_preferred_handler from visit_attribute_type openmrs table

visit_attribute_type_handler_config visit_attribute_type_handler_config from visit_attribute_type openmrs table

visit_attribute_type_min_occurs visit_attribute_type_min_occurs from visit_attribute_type openmrs table

visit_attribute_type_max_occurs visit_attribute_type_min_occurs visit_attribute_type openmrs table

 iii) visit_attributes

Column Name Description

visit_id Id reference for a visit

Visit_Status Status of visit [OPD / IPD]

Admission_Status Status of admission [Admitted / Discharged etc]

b) Encounter

 i) patient_encounter_details_default

Column Name Description

patient_id Id reference for a patient

visit_id Id reference for a visit

episode_id Id reference for a episode

encounter_id Id reference for a encounter

encounter_type_id Id reference for a encounter type

encounter_type_name Type of encounter [Consultation / REG etc]

encounter_type_description

Description of encounter [Consultation encounter/Registration encounter etc]

edit_privilege edit_privilege from encounter_type table in openmrs

view_privilege view_privilege from encounter_type table in openmrs

location_name Name of location [Labour ward/ General ward]

form_id form_id from encounter table in openmrs

encounter_datetime Date and time of encounter

encounter_role_id Id reference for encounter role from encounter_role table in openmrs

encounter_role_name name of encounter role encounter_role in openmrs

provider_id Id reference of provider from encounter_provider table in openmrs

provider_name provider name from provider table in openmrs

encounter_role_description description of encounter role from encounter_role description table.

Mart Views

a) Patient_visits_encounters_view

This view allows the user to see the patient details data along with with all the visit and its details. It has also has the details of all the encounters
at every encounter location. Each patient might have multiple visits hence the view have may have multiple rows of same patient data.

Medication

Configuration
ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

Flattened mart tables

The medicines ordered for the patients will be flattened into one table namely .medication_data

Configuration

ColumnsToIgnore apply for this module (Refer Appendix)

 is applicableincrementalUpdateConfig (Refer)Incremental Update

{
 "name": "Medication And Orders",
 "type": "medicationAndOrders",
 "chunkSizeToRead": "500",
 "groupedJobConfigs": [
 {
 "tableName": "medication_data_default",
 "columnsToIgnore": [
]
 }
]
}

Existing OpenMRS tables

Drug_order
Drug
Orders
Order_frequency

Patient
Patient_program
Program
Encounter
Provider
Person_name
Obs
Concept
Concept_name
Location

Flattened mart tables

medication_data_default

a) medication_data_default

Column Name Description

patient_id Patient id

program_id Program Id of the patient for which he is enrolled to.

patient_program_id Patient program id

patient_program_name Patient program name

Eg: Reconstructive Surgery

order_id Drug order id

coded_drug_name Drug coded name

Eg: FERROUS sulphate 256mg (=80 mg iron)

non_coded_drug_name Drug non-coded name

Eg: Candesartan

dose Dose of the drug

Eg: 1, 500

dose_units Dosage units

Eg: Tablets(s), mg

frequency Drug consumption frequency

Eg: Twice a day

route Drug consumption route

Eg: Oral, Intravenous

start_date Medication start date

calculated_end_date Medication end date

date_stopped Medication stopped date

stop_reason Medication stopped reason

duration Medication duration(in quantity_units)

duration_units Duration units

Eg: Week(s), Day(s)

quantity Drugs quantity for whole duration(in quntity_units)

Eg: 14, 4800

quantity_units Drugs quantity in units

Eg: Tablet(s), mg

additional_instructions Any other instructions given on medication

dispense Whether drugs dispensed or not

Eg: Yes

encounter_id Id reference to encounter from encounter table in openmrs

orderer_id Id reference to orderer from orders table in openmrs

orderer_name name of orderer from order_type table in openmrs

visit_id Id reference to the visit from visit table in openmrs

visit_type Type of visit from visit_type table in openmrs

encounter_type_id Id reference to encounter type from encounter_type table in openmrs

encounter_type_name name of encounter type from encounter_type table in openmrs

Orders

configuration
ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

The orders placed for the patients will be flattened into analytics database with orderable name (Eg: Lab Samples, Radiology, etc.). A separate
table will be created for each orderable with same structure. The following is the example for lab samples.

configuration

ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Medication And Orders",
 "type": "medicationAndOrders",
 "chunkSizeToRead": "500",
 "groupedJobConfigs": [
 {
 "tableName":
 "columnsToIgnore": [
]
 }
]
}

Existing OpenMRS tables

Orders
Visit
Visit_type
Concept
Concept_set
Concept_view

 Mart TablesFlattened

lab_samples

a) lab_samples

Column Name Description

patient_id Id of patient to whom order belongs

date_created Order created dated

encounter_id Encounter id

visit_name Visit name Eg: Clinic

type_of_test Type of test: Eg. Blood

panel_name Different panels in a type of test.

Eg: Hematology, Anaemia Panel are two panels in Blood

test_name Test corresponds to the panel

Eg: HPLC, Coombs Test (Direct), Coombs Test (Indirect), G6PD are four tests in Hematology

Diagnosis

ColumnsToIgnore, ignoreAllFreeTextConcepts apply for this module (Refer Appendix)
Existing OpenMRS tables

Mart Tables

Mart Views

If one implementation has Diagnosis, table will get created with existing data otherwise an empty table will be generated since Visit_diagnosis Vi
comes with Bahmni product by default.sit Diagnosis

Will get all the child concepts of as columns.Visit Diagnosis

ColumnsToIgnore, ignoreAllFreeTextConcepts apply for this module (Refer Appendix)

 To generate this table we took product dump as reference.

Configuration

{
 "name": "Diagnoses And Conditions",

 "type": "diagnosesAndConditions",
 "chunkSizeToRead": "500"
}

Existing OpenMRS tables

Obs
Concept
Concept_name
location
visit
patient_program

Mart Tables

visit_diagnoses

a) visit_diagnoses

Column Name Description

id_visit_diagnoses Obs id

patient_id Id reference for patient from patient table in openmrs

encounter_id In which encounter data is captured

visit_id Id reference to visit from visit table in openmrs

obs_datetime Obs date time from obs table in openmrs

date_created date_created from visit table in openmrs

date_modified date_created from visit table in openmrs

location_id Id reference to location from location table.

location_name Name of location from location table in openmrs

program_id Id reference to program from program table in openmrs

program_name Name of program from program table in openmrs

patient_program_id Id reference to patient program from patient_program table in openmrs

bahmni_diagnosis_status

bahmni_diagnosis_revised

bahmni_initial_diagnosis

coded_diagnosis Diagnosis name which exists in database

diagnosis_certainty

diagnosis_order

Mart Views

a) patient_diagnosis_condition_view

Column Name Description

age_at_condition Age of patient

age_group_at_condition Age group under which the patient falls

birth_date Birth date of patient

coded_diagnosis Diagnosis value

condition_date_created Date on which condition was recorded

condition_end_date Date on which condition was removed

condition_id Id reference for condition

condition_name Type of condition

condition_onset_date When condition was set in

creator Who created the record

dead

diagnosis_certainty

diagnosis_order

encounter_id Id reference for encounter

end_reason

gender Gender for patient

nationalIdentificationNumber ID for patient (such as passport)

non_coded_diagnosis

obs_datetime

patient_id Reference ID for the patient

patientAddress Patient Address

patientAddressLine2 Patient Address

patientCountry Patient Address

patientDistrict Patient Address

person_id Reference ID for the person

previous_condition_id ID for previous condition

status Condition status

telephoneNumber

Conditions

ColumnsToIgnore apply for this module (Refer Appendix)
Existing OpenMRS tables

Mart Tables

If one implementation has Conditions, table will get created with existing data otherwise an empty table will be created since conditions Conditio
 comes with Bahmni product by default.ns

ColumnsToIgnore apply for this module (Refer Appendix)

To generate this table we took product dump as reference

Configuration

{
 "name": "Diagnoses And Conditions",
 "type": "diagnosesAndConditions",
 "chunkSizeToRead": "500"
}

Existing OpenMRS tables

Conditions
Concept_view : For concept name

Mart Tables

a) conditions_default

Column Name Description

condition_id Unique id for the table

previous_condition_id

patient_id To know for which patient these details are entered

status

condition_name Will have only one column for non-coded and coded condition names. Openmrs has two columns one is for coded
and other is for non-coded

is_coded_condition_
name

This column tell us whether a condition is coded or not

onset_date

additional_detail

end_date

end_reason

creator Who has entered these conditions

date_created Date of creation of these conditions

Bacteriology Data

All observations recorded against the concept Bacteriology Concept Set and it’s children will be in one table. All multi select and add more
sections under this concept will become separate tables.

configuration

ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is “NOT” applicable

{
 "name": "Bacteriology Data",
 "conceptReferenceSource": "",
 "type": "bacteriology"
}

Existing OpenMRS tables

Obs
visit
program
patient_program
location

Flattened Mart Tables

Since we do not have add mores/ multi-selects in bacteriology form in demo environment, there will be only one table :- bacteriology_concept_s
 which will have all the details.et

bacteriology_concept_set

Some of the columns in this table are as follows. Others columns are not mentioned here

Column Name Description

id_bacteriology_concept_set Id reference to bacteriology concept set from

patient_id Id reference to patient from patient table in openmrs

encounter_id In which encounter data is captured

obs_datetime Observation date and time

date_created Date when Bacteriology details are filled for the first time

date_modified Date of recent Bacteriology details updation

location_id Location code

location_name Location name

program_id Program code

program_name Name of the program

patient_program_id Id reference to patient program from patient_program table in openmrs

Specimen_collection date Date of collection of the specimen

specimen_sample_source_noncoded

specimen_sample_source

specimen_id

Translations

if we need to get those values as per the translations we need to add the below in the “locale tag /var/www/bahmni_config/bahmni-mart
“ file./bahmni-mart.json

{
 "name": "Bacteriology Data",
 "conceptReferenceSource": "",
 "type": "bacteriology",
 "locale" : "fr"
 }

Observations

Configuration

ColumnsToIgnore, , ignoreAllFreeTextConcepts, separateTableConfig, enableForAddMoreAndMultiSelect apply for this module (Refer Appendix
)

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Obs Data",
 "type": "obs",
 "incrementalUpdateConfig": {
 "updateOn": "encounter_id",
 "eventCategory": "Encounter",
 "openmrsTableName": "encounter"
 },
 "separateTableConfig": {
 "enableForAddMoreAndMultiSelect": true,
 "separateTables": [
]
 },
 "conceptReferenceSource": "",
 "ignoreAllFreeTextConcepts": true,
 "columnsToIgnore": [
]
}

Existing OpenMRS tables

Obs

1.
a.

b.

2.

a.

Flattened Mart Tables

All forms that are under the concept ALL OBSERVATION TEMPLATES will become separate tables in the mart database. Any multi select or
add more sections under these forms will become separate tables by default. One can also choose the concepts they want to have as separate
tables using separate Tables configuration in obs job.

Since we have 51 forms under All Observation Template of demo environment currently, there will be 51 separate tables. Additionally all multi
select, add more sections and concepts from seperateTables config will become separate tables.

Below are the columns that are common in every form table

Column Name Description

patient_id Id reference to the patient from patient table

encounter_id In which encounter data is captured

obs_datetime Observation date and time

location_id Location code

location_name Location name

program_id Program code

program_name Name of the program

date_created Date of form creation (When filled for the first time)

date_modified Date of recent form updation (When any form fields are filled again
or modified in same encounter)

Translations

if we need to get those values as per the translations we need to add the below in the “locale tag /var/www/bahmni_config/bahmni-mart
“ file./bahmni-mart.json

{
 "name": "Obs Data",
 "type": "obs",
 "locale": "fr"
 }

Changing form name in production

Whenever we update the form name (by updating concept set name in form1 and updating form name from implementer interface in form2) and
run mart with incremental load a new table is created in mart with new form name. It also migrates the existing observation in old table to new
table and any modifications to old observations or new observations are reflected/loaded into new form table only. This makes the old form table
unless and inconsistent with current data in system. The old table can only be deleted by running mart on Full load.

Note: To avoid confusion it is always recommended to run mart on full load after the form name is updated. When ever we have to change the

Use-Cases

Some Additional information in use-case view:-

When a form has a multi select coded answer
Separate table with the question name is created and the multi select answers are inserted in each row

If the same question is used in a separate form, then the data is inserted in the same table if the table is created for the multi
select question.

When a form has a section which is not add more

2.

a.

3.
a.

b.

4.
a.

b.

5.
a.

b.

6.
a.

7.
a.

8.
a.

b.

9.
a.

b.

10.
a.

b.

The section data is inserted in the same form table without creating a new table

When a form has a section which is add more
Section data is inserted in a separate table.

Table name will be formname_Section name

When a form has a section which is not add more and a multi select coded answer
Section data is inserted in Form table

Multi select answer is inserted in a separate table

When a form has a section which is add more and a multi select coded answer
Section data is inserted in a separate section table

Multi select answer is inserted in a separate table

When the data is voided from the patient observation
The data is removed from the table column

When the form has translations added (From form builder implementer interface) and the mart is run in english
Data is inserted according to the english translations

When the form has translations added and the mart is run in french
Data is inserted according to the french translations

Previous data is also changed according to french translations

When the column name is added in columns to ignore, (Fully specified name of the concept)
The column is removed from the table

The entire table data is removed when there is only one column in the table and the same concept is added in columns to ignore.

When the entire form is reconstructed, (All the form fields are removed and now concepts are added)
Existing data is removed from the table, and the new columns are added to the table

New data is added to the form table when the observation is filled to a patient

Forms 2.0 Documentation

We could navigate Forms 2.0 either from clinical module or programs module.

Configuration
ColumnsToIgnore, ignoreAllFreeTextConcepts, separateTableConfig, enableForAddMoreAndMultiSelect apply for this module (
Refer Appendix)

incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

Flattened Mart Tables

Translations

Changing form name in production

Configuration

ColumnsToIgnore, ignoreAllFreeTextConcepts, separateTableConfig, enableForAddMoreAndMultiSelect apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Form2 Obs Data",
 "type": "form2obs",
 "incrementalUpdateConfig": {
 "updateOn": "encounter_id",
 "eventCategory": "Encounter",
 "openmrsTableName": "encounter"
 },
 "separateTableConfig": {
 "enableForAddMoreAndMultiSelect": true,
 "separateTables": [
]
 },
 "conceptReferenceSource": "",

 "ignoreAllFreeTextConcepts": true,
 "columnsToIgnore": [
]
}

Existing OpenMRS tables

Obs

Flattened Mart Tables

The Forms 2.0 module deals with only Obs table. Once the data is filled against a particular form, upon executing mart, the form observations
would be populated in the mart with the table name as “ ”.form_name

Below are the columns that are common in every form table

Column Name Description

patient_id Id reference for patient id from patient_id table.

encounter_id In which encounter data is captured

obs_datetime Observation date and time

location_id Location code

location_name Location name

program_id Program code

program_name Name of the program

date_created Date of form creation (When filled for the first time)

date_modified Date of recent form updation (When any form fields are filled again
or modified in same encounter)

Translations

if we need to get those values as per the translations we need to add the below in the “locale tag /var/www/bahmni_config/bahmni-mart
“ file./bahmni-mart.json

{
 "name": "Form2 Obs Data",
 "type": "form2obs",
 "locale": "fr",
 ..
 ..
}

Changing form name in production

https://msfprojects.atlassian.net/wiki/spaces/BAH/pages/330268827/Observations#Changing-form-name-in-production

Registration Second Page

Configuration
ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer Incremental Update)

Existing OpenMRS tables

Mart Tables

Mart Views

Translations

Registration on the second page is a default Bahmni feature.

Configuration

ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer)Incremental Update

{
 "name": "Registration Second Page",
 "type": "reg",
 "columnsToIgnore": [],
 "separateTableConfig": {
 "enableForAddMoreAndMultiSelect": true,
 "separateTables": []
 },
 "incrementalUpdateConfig": {
 "updateOn": "encounter_id",
 "eventCategory": "Encounter",
 "openmrsTableName": "encounter"
 }
}

Existing OpenMRS tables

Obs
visit
program
patient_program
location

Mart Tables

reg_nutritional_values
reg_fee_information

In mart database, there will be two tables based on the configuration defined as part of the Bahmni config. The default Bahmni has the config as
mentioned in the Appendix . As per the configuration following tables will be created. Any other concept can be defined in the same config. To
configure Registration second page in Bahmni UI check the . documentation

a) (For reg_nutritional_values Nutritional Values)

Column Name Column Description

id_reg_nutritional_values Observation Id same as obs table of openmrs database

patient_id For which patient the data was captured

encounter_id In which encounter the data was captured

visit_id Id reference of visit from visit table in openmrs

obs_datetime obs date and time from obs table in openmrs

date_created visit date created from visit table in openmrs

date_modified visit date changed from visit table in openmrs

location_id Id reference to location from location table in openmrs

location_name Name of location from location table in openmrs

program_id Id reference to the program from program table in openmrs

program_name Name of program from program table in openmrs

patient_program_id Id reference to patient program from patient_program table in openmrs

height For given encounter and patient what is the value of height

weight For given encounter and patient what is the value of weight

b) ()reg_fee_information Fee Information

Column name Column Description

id_reg_fee_information Observation Id same as obs table of openmrs database

patient_id For which patient the data was captured

encounter_id In which encounter the data was captured

visit_id Id reference of visit from visit table in openmrs

obs_datetime obs date and time from obs table in openmrs

date_created visit date created from visit table in openmrs

date_modified visit date changed from visit table in openmrs

location_id Id reference to location from location table in openmrs

location_name Name of location from location table in openmrs

program_id Id reference to the program from program table in openmrs

program_name Name of program from program table in openmrs

patient_program_id Id reference to patient program from patient_program table in openmrs

registration_fees For given encounter and patient what is the value of registration fees

comments For given encounter and patient what is the value of comments

Note:- If a concept is present both in Observation form and in the registration second page, and the data for the concept is added from the
Registration second page as well as one of the forms then the table under registration second page will have both the values under separate
encounters.

https://bahmni.atlassian.net/wiki/spaces/BAH/pages/3506184/Registration+Page

However if a value is added from forms the same will only reflect under the obs table and not in the registration second page table.

Mart Views

There will be a separate table for each concept set configured in extension.json. To make it easily accessible there will be a view named as regist
 combining all the tables related to registration second page in mart databaseration_second_page_view

patient_id For which patient the data was captured

encounter_id In which encounter the data was captured

visit_id Id reference of visit from visit table in openmrs

obs_datetime obs date and time from obs table in openmrs

date_created visit date created from visit table in openmrs

date_modified visit date changed from visit table in openmrs

location_id Id reference to location from location table in openmrs

location_name Name of location from location table in openmrs

program_id Id reference to the program from program table in openmrs

program_name Name of program from program table in openmrs

patient_program_id Id reference to patient program from patient_program table in openmrs

reg_fee_information_registration_fees Fee collected from that patient from obs table in openmrs

reg_nutritional_values_height Height mentioned in the RSP from obs table in openmrs

reg_nutritional_values_weight Weight of patient mentioned in the RSP from obs table in openmrs

Translations

if we need to get those values as per the translations we need to add the below in the “locale tag /var/www/bahmni_config/bahmni-mart
“ file./bahmni-mart.json

{
 "name": "Registration Second Page",
 "type": "reg",
 "locale" :"fr",
}

Metadata

Configuration

{
 "name": "MetaData Dictionary",
 "type": "metadata",
 "conceptReferenceSource": ""
}

Existing OpenMRS tables

concept
concept_set
concept_name

Flattened Mart Tables

meta_data_dictionary

a) meta_data_dictionary- The metadata dictionary table displays all the information of concept sets that are mapped to All Observation
 OpenMrs table. If there is a concept set ‘Disposition’ and two concept set members are mapped to it, below are the sample entries in Templates

the meta_data_dictionary mart table.

fully_specified_name question question_datatype description answer answer_code

Disposition Disposition Coded Answerconcept-1

Disposition Disposition Coded Answerconcept-2

Column Name Description

fully_specified_name Full Name of concept from concept_name table in openmrs

question Short Name of concept from concept_name table in openmrs

question_datatype Data type of the concept

description Description/ helptext of a concept

answer answers mapped to the coded question concepts

answer_code answer code

Disposition

Configuration

ColumnsToIgnore apply for this module (Refer Appendix)

incrementalUpdateConfig is applicable (Refer)Incremental Update

 {
 "name": "Disposition Data",
 "type": "disposition",
 "columnsToIgnore": [],
 "incrementalUpdateConfig": {
 "updateOn": "encounter_id",
 "eventCategory": "Encounter",
 "openmrsTableName": "encounter"
 }
 }
]

Existing OpenMRS tables

concept
concept_set
concept_name
patient
visit
obs
location
program
patient_program
ecnounter

Flattened Mart Tables

disposition_set

a) dispostion_set- This table provides the information about the disposition of the patient enrolled from programs/clinical module.

Column Name Description

id_disposition_set Id reference to the disposition set

patient_id Id reference to the patient from patient table in openmrs

encounter_id Id reference to the encounter from encounter table in openmrs

visit_id Id reference to the visit from the visit table in openmrs

obs_datetime obs date time from obs table in openmrs

date_created date of disposition got created

date_modified date of disposition got modified

location_id location id of the patient

location_name location name

program_id Id reference to what program that particular patient is assigned to

program_name Name of the program assigned

patient_program_id patient_program_id from patient_program openmrs table

disposition_note Disposition note entered while enrolling for disposition

disposition Disposition of which the patient enrolled to

Translations

if we need to get those values as per the translations we need to add the below in the “locale tag /var/www/bahmni_config/bahmni-mart
“ file./bahmni-mart.json

1.

1.

1.

1.

1.

1.

{
 "name": "Disposition Data",
 "type": "disposition",
 "locale": "fr"
}

Incremental Update

Bahmni-mart supports incremental update during data flattening.This can be easily enabled by adding incremental update config in /var/www
/bahmni_config/bahmni-mart/

bahmni-mart.json for any specific job.

Check for example. here

Key Name Description Default Value Required

updateOn Column name in the analytics database depends on which incremental update should work N/A yes

eventCategory Category name present in event_records table (openmrs database) N/A yes

openmrsTableName Table name in OpenMRS for given eventCategory N/A yes

Email Configuration for Notification Regarding Failed Jobs

A mail will be received incase of any job fails after every run of bahmni-mart application.

 For getting mail you have to provide values for , and in ‘mail_subject’ ‘mail_from’ ‘mail_recipients’ ‘bahmni-mart-playbook/roles/bahmni-
. For sending mail to multiple recipients, you can mention all the recipient mail ids separated by commas (see below mart/defaults/main.yml’

example).

Note - You won’t get mail if values of or is empty. mail_recipients mail_from

For Example -

You have to provide values for , and in ‘mail_subject’ ‘mail_from’ ‘mail_recipients’ ‘bahmni-mart-playbook/roles/bahmni-mart/defaults
like below example./main.yml’

 = “Notification regarding failed jobs”mail_subject

 = “no-reply@bahmni-mart.notifications”mail_from

 = “recipient_one@gmail. com, ”mail_recipients recipient_two@gmail.com

Whenever job fails you will get mail into spam folder of given recipients. For getting mail to inbox rather than going to spam folder, the recipients
have to apply the below filter procedure.

Filter Process for getting mail in Inbox

You have to go to recipients mail.

In mail at top right corner there is Setting sign.

Click on that it will give dropdown. In dropdown click on the Settings.

Then go to Filters and Blocked Addresses tab.

Click on ‘Create a new filter’ and then provide value of

‘mail_from’ address which given in file (like given in the example - no-bahmni-mart-playbook/roles/bahmni-mart/defaults/main.yml
reply@bahmni-mart.notifications) in From text block.

Then click on ‘Create filter’ and tas Never send it to Spam to that filter and click on Create filter again .

Note: Due to some technical differences in Bahmni, incremental update config is not suggested for bacteriology job. Find more details in o
penmrs-talk

https://github.com/bahmni-msf/bahmni-mart/blob/master/src/main/resources/groupedJobs/person.json#L14-L24
mailto:recipient_two@gmail.com
https://talk.openmrs.org/t/no-events-for-bacteriology-micro-biology-obs-when-edited-from-display-controls/27434
https://talk.openmrs.org/t/no-events-for-bacteriology-micro-biology-obs-when-edited-from-display-controls/27434

1.

By doing this it will create a filter and mail will come to inbox.

 For Developers - To Run locally

Your application-dev.properties file should config with below values for getting mail.

 bahmni-mart.mail.subject = Notification regarding failed jobs

 bahmni-mart.mail.from = “no-reply@bahmni-mart.notifications”

 bahmni-mart.mail.recipients = “recipient_one@gmail. com, ”recipient_two@gmail.com

applictaion-dev.properties file path -

/opt/bahmni-mart/properties/application-dev.properties

After this you have to follow above filter process for getting mail in inbox rather than in spam.

Appendix

All the configurations mentioned below need to be added in bahmni-mart.json

Obs
bacteriology
orders
diagnosis
rsp (Registration Second Page)

Key name description Default
value

Requir
ed

name Job name N/A Yes

type Job type N/A Yes

separateTables This config refers the different tables that need to be separated N/A No

conceptReferenceSource This config is used for data masking. Here the concept reference source can be added as per the
OpenMRS database

N/A No

ignoreAllFreeTextConcepts This config when enabled ignores all the free text concepts True No

columnsToIgnore This config ignores the columns which are not needed to be shown on analytics DB N/A No

includeFreeTextConceptN
ames

This config includes the text columns of all concept names given in config

locale Mart flattens the tables/columns based on given locale en No

EAV

Key name description Default value Required

name Job name N/A Yes

type Job type N/A Yes

chunkSizeToRead This tells how many rows to read in the source DB before writing it into analytics DB N/A Yes

tableName Target table name in analytics DB N/A Yes

eavAttributes

attributeTypeTableName

mailto:recipient_two@gmail.com

1.

1.

1.

attributeTableName

valueTableJoiningId

typeTableJoiningId

valueColumnName

primaryKey Primary key in the target table N/A Yes

columnsToIgnore This config ignores the columns which are not needed to be shown on analytics DB N/A No

Metadata

Key name description Default
value

Required

name Job name N/A Yes

type Job type N/A Yes

conceptReferenceSou
rce

This config is used for data masking. Here the concept reference source can be added as per the
OpenMRS database

N/A Yes

CSV upload

Key name description Default value Required

name Job name N/A Yes

type Job type N/A Yes

sourceFilePath N/A

Yes

CustomSql

Key name description Default
value

Required

name Job name N/A Yes

type Job type N/A Yes

chunkSizeToRe
ad

This tells how many rows to read in the source DB before writing it into analytics
DB

N/A Yes

tableName Target table name in analytics DB N/A Yes

columnsToIgnore This config ignores the columns which are not needed to be shown on analytics
DB

N/A No

readerSql This sql reads data from source database (OpenMRS) N/A Yes (either readerSql or
sourceFilePath)

sourceFilePath This key is an alternative for . In this case a file path needs to be readerSql
mentioned

N/A

Frequently(F) Asked(A) Questions(Qs)

Installation FAQs

Q1. How can I do a dev set-up for bahmni-mart?

Installation FAQs

General FAQs

TechnicalFAQs

A: After cloning follow the below steps:-

Update /src/main/resources/application-dev.properties and /bahmni-mart/src/test/resources
/application-test.properties with ur corresponding vagrant ip and password(if required)

Connect to the database of your local vagrant with the IDEA u are working in

Run /scripts/dev/testMysql.sql and sudo mysql -pP@ssw0rd123 -e "GRANT ALL ON
test_openmrs.* to'test_user'@'localhost';FLUSH PRIVILEGES;" in mysql database

Run /scripts/dev/psqlTestSetup.sql and psql -U test_user test_analytics -c "CREATE
SCHEMA bahmni_mart_scdf; in postgres database

Q2. How can I install mart in my local system and point to bahmni installed in Vagrant or any
other environment?

A: May be the steps for gradle build and run commands we can provide. And also provide how to do
the bahmni configuration.

Q3. How can I install mart without metabase using the ansible playbook?

Q4. Which version of Postgres is required for Mart as a Prerequisite?

A: For Bahmni version >=0.89 & < 0.92 -> Install PostgreSQL 92 (update the link)

For Bahmni version >= 0.92 -> Install PostgreSQL 96 (update the link)

Q5. How can I override the default mart configuration for any particular implementation?

A: You can place an overridden version of bahmni-mart.json at `/var/www/bahmni_config/bahmni-
mart/` path of your implementation environment.

 Q6. How can i get started with mart?

A: Bahmni Mart Installation Setup

 Q7. What is the suggested DB tool to view the analytics table and the procedure to Connect
 mart to the DB tool?

A: Bahmni-Mart Setup with MySQLWorkbench & DBeaver

 Q8.How to configure the mart jobs?

A: Bahmni-Mart Json File

 Q9: Where is mart.json file located on the server?

A: ./var/www/bahmni_config/bahmni_mart/mart.json

General FAQs

Q1. How to resolve Cannot connect to mysql or cannot connect to postgres or
Communication link failure

A: Restart mysql and postgres servers and make sure you are connecting with correct password

Q2: How to ignore columns in mart tables

A: While creating mart tables you don’t want some fields from the openmrs table. You can add them
to the "columnsToIgnore" field.

Q3: One of the jobs fails(Eg: Microbiology) with out of memory issue, what should I do?

A: Bahmni mart from Bahmni and keeps it in memory until it pushes to reads job data analytics
database. If the data in Bahmni is very large for that specific job memory overflow issues may occur.
As of now bahmni-mart doesn’t have streaming support for all the jobs except . Please orders
request for the feature enhancement.

Q4: Can I remove any jobs in bahmni-mart.json if I don’t need it?

Functional FAQs

Security FAQs

Performance FAQs

Name of the contributers :
 ,Himabindu Thungathurty Pritam Das

, ,Rakesh Kumar (Unlicensed) Supriy
 , ,a Muppiri Tarun Shettygari Vinisha

Donthula

https://msfprojects.atlassian.net/wiki/display/~557058%3Ad0693809-6796-4c30-b887-eed8e802d572
https://msfprojects.atlassian.net/wiki/display/~557058%3A3e8e7719-cb9e-4745-8a81-03ddb46f33af
https://msfprojects.atlassian.net/wiki/display/~5df9bdd9b6d73c0cb5873a9e
https://msfprojects.atlassian.net/wiki/display/~5c768d98a610e635fa0fbd14
https://msfprojects.atlassian.net/wiki/display/~5c768d98a610e635fa0fbd14
https://msfprojects.atlassian.net/wiki/display/~5def2ca9ca98940cb900f191
https://msfprojects.atlassian.net/wiki/display/~5c3ecdc316ac1e4f7cbcf9b6
https://msfprojects.atlassian.net/wiki/display/~5c3ecdc316ac1e4f7cbcf9b6

A: Yes, it is safe to delete(or add) any unwanted job configurations from bahmni-mart.json

Q5. What is Bahmni Mart?

A: We need 1-2 line overview of Mart.

Q6. What is Metabase?

A: We need 1-2 line overview of Metabase.

Q7. What to check if any view is failing while running mart?

A: Make sure if you have corresponding configuration in mart. For example if you don't have
registration second page configured for your implementation the corresponding view would be failing

Q8. What are the databases supported by Mart?

Q9: When to use Custom Sql & when to use sql files

A: When you think more than one job can use the common sql queries, you can create a separate
sql file and mention the type field.

Else you can mention customSql in the type field and write the sql to be executed in readerSql field’.

How to view the log files.

How to stop the running mart.

What will happen if one of my jobs fails?

Q10: Why the incremental load is not working. Its always doing the full load.

A: Incremental load depends on the atom feed events that are published by openmrs. And we have
the option to turn it on or off based on the usage. And we have a scheduler to publish the events
from time to time. It can be configured through openmrs admin “Manage scheduler” page. Below is
the property for the same

“OpenMRS event publisher task” If incremental load is not working fine, please check the above
scheduler is running fine/not.

TechnicalFAQs

Q1: How Does the data type of the values change in Bahmni mart compare to openers?

Q2: How boolean is getting stored at bahmni-mart tables?

Q3: What is the difference between form1 and form2 in mart?

A: Form 1 tables and Form 2 tables both will have the entries for the observations filled.

But Form 1 tables will have the “id_formName” column which will contain “obs id”(openmrs) of the
form concept.

Form 2 tables will have the “form_field_path” column which will contain the form name.

Q3: What is form_field_path and reference_form_field_path?

A: These both columns will come into picture when a separate table got created for either add-more
/multi-select concepts and sections.

“form_field_path” will contain the form name along with the control id followed by count of the control
among all the controls that got added using add more(i.e. Path from section to the obs).

Eg: form-name.{section_id} -
{add_more_count_of_section}/{obs_control_id} -
{add_more_count_of_obs}

“reference_form_field_path” will contain the path of section in the form(i.e. path from form name to
the section control).

Eg: form-name.{section_id} -
{add_more_count_of_section}

Q4: Why does my customSQL job fail with SQL syntax error even though the SQL is correct?

A: The issue could be with configuration. Mart internally parses the given SQL columnsToIgnore
query in jobs using and removes the columns provided in customSQL jsqlparser columnsToIgnore

If the part of the query is too complex(with aggregate functions etc), may not be . select jsqlparser
too intelligent to parse the SQL query. You can solve the problem by avoiding complex select

 or update the SQL query to remove unwanted columns so parts in the outermost select clause col
configuration can be ignoredumnsToIgnore

Q5: How to fix, mart fails with FileNotFoundException ?

java.io.FileNotFoundException: /var/www
/bahmni_config/bahmni-mart/bahmni-mart.json

A: Make sure the bahmni-mart.json file is there in the /var/www/bahmni_config folder. Otherwise run
below task to create a symlink from /etc/bahmni-mart/conf path

ln -s /etc/bahmni-mart/conf bahmni-mart.

Usually when we update the config the symlink gets removed.

Q6: Why mart is failing with java.sql.SQLException and not able to connect to the databases?

 Please check the passwords for both openmrs and analytics databases in /etc/bahmni-mart-A:
playbook/setup.yml file. If it needs a change please update in setup.yml and re-run the mart
installation.

Functional FAQs

Q1. Does Bahmni-mart considering older data or data from any specific date

A: Yes, and marker table can be updated for using data from a specific date

Q2: How to remove incremental update config(or any modifications) for any grouped jobs?

A: If you maintain your own mart code then you can go to the corresponding grouped job config and
make modifications there.All grouped job config jsons will be placed under /src/main/resources
/groupedJobs

 (or)

 If you don't have control over mart code copy the json contents from the corresponding grouped job
json to your /var/www/bahmni_config/bahmni-mart/bahmni-mart.json and make the required
modifications

Q2: What is the use of giving separate table config?

A: You can add configuration to create new tables for all multi-select and add more concepts by
enabling enableForAddMoreAndMultiSelect to true

Q3: What if we want to create a separate table for a concept which is neither multi-select nor
add more?

A: You can configure the concept to have separate table created by giving concept in
"separateTables": []

Q4. Is there a case where we should run mart in only full load instead of incremental load?

A: If you make any changes in bahmni-mart.json, run the mart in full load once and proceed.

Q5: I don’t see the data in mart analytics database though mart runs successfully

A: Mart does incremental loading using the events in Bahmni/openmrs by default. If there is any
delay in raising the event or if the event skipped with unknown reasons by mart, you don’t see the
data. It is recommended to do a full-load of mart once in a while. You can do full load safely by
truncating markers table and deleting all the tables in the analytics database.

Q6: There are some tables in mart which are not related to Bahmni anymore

A: If you do any metadata changes(Eg: changing form name) in Bahmni, the mart is not so intelligent
to clear the stale tables. It is recommended to do full-load when there is a change in Bahmni
metadata or any configuration is updated in bahmni-mart.json

Q7. How can I override the default mart configuration for any particular implementation?

A: You can place an overridden version of bahmni-mart.json at

/var/www/bahmni_config/bahmni-mart/path of
your implementation environment.

Q8.What is the difference between Full load and Incremental Load for Mart?

Q9.What data do i get after the full Load?

Q9: What are the different cases in which I can’t see the form in mart table?

A: Following cases are possible:

When you form has duplicate concepts, the table creation for the form will be skipped

When the concept is more than 50 characters, postures will skip creating the table

Q10: How are the special characters handled in the analytics table?

A: Special characters are replaced with underscores (_)

Q11: Diff between full load and incremental load and how to switch between them. And what’s
the best option?

A:

Security FAQs

Q1.How to protect the patient sensitive data from flowing to analytics table?

A: You can add the specific concepts to columns to ignore. Those concepts and the data related to
the concepts will not be displayed

Q2. Where can we configure the password for Postgres?

A: You can configure password in the playbook.

/etc/bahmni-mart-playbook

Performance FAQs

Q1: Does custom query impact on performance?

Q2.How long will it take to run mart?

A: It depends majorly on the following 2 factors:

It depends on the number of jobs configured

Data present in the openmrs tables.

Q3.What is the suggested way to run the bahmni-mart. (Incremental, Full Load)

	Bahmni-Mart
	Overview
	Bahmni Mart Installation Setup
	Bahmni-Mart Setup with MySQLWorkbench & DBeaver
	Bahmni-Mart Json File
	Add Custom View Sql to bahmni-mart.json

	Modules
	Programs Module
	Patients
	Appointment Scheduling
	Bed Management
	Location
	Operation Theatre
	Person
	Provider
	Visits and Encounters
	Medication
	Orders
	Diagnosis
	Conditions
	Bacteriology Data
	Observations
	Forms 2.0 Documentation
	Registration Second Page
	Metadata
	Disposition

	Incremental Update
	Email Configuration for Notification Regarding Failed Jobs
	Appendix
	Frequently(F) Asked(A) Questions(Qs)

	queryString:
	queryString:

